On Interconnections of Infinite-dimensional Port-Hamiltonian Systems

نویسندگان

  • Ramkrishna Pasumarthy
  • Arjan J. van der Schaft
چکیده

Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving interconnection of Dirac structures is again a Dirac structure. In this paper we study interconnection properties of mixed finite and infinite dimensional port-Hamiltonian systems and show that this interconnection again defines a port-Hamiltonian system. We also investigate which closed-loop port-Hamiltonian systems can be achieved by power conserving interconnections of finite and infinite dimensional port-Hamiltonian systems. Finally we study these results with particular reference to the transmission line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Port-Hamiltonian formulation of shallow water equations with coriolis force and topography∗

Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...

متن کامل

Network Modelling and Simulation of Robots with Flexible Links. a Port-Based Approach

In this paper, the port Hamiltonian model of a manipulator is presented as the result of the power-conserving interconnection of a set of main components (rigid bodies, flexible links and kinematic pairs). The flexible link model we propose is different from classical approaches because it takes into account the infinite dimensional nature of elasticity, since it does not rely on any finite dim...

متن کامل

A port-Hamiltonian approach to modeling and interconnections of canal systems

We show how the port-Hamiltonian formulation of distributed parameter systems, which incorporates energy flow through the boundary of the spatial domain of the system, can be used to model networks of canals and study interconnections of such systems. We first formulate fluid flow with 1-d spatial variable whose dynamics are given by the well-known shallow water equations, with respect to a Sto...

متن کامل

Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors

Infinite dimensional Port Hamiltonian representation of non isothermal chemical reactors is proposed in the case of mass transport diffusion and chemical reaction without convection. The proposed approach uses thermodynamic variables. The presentation is given for one dimensional spatial domain by using the internal energy and the opposite of the entropy as hamiltonian functions.

متن کامل

Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems

We will give general sufficient conditions under which a controller achieves robust regulation for a boundary control and observation system. Utilizing these conditions we construct a minimal order robust controller for an arbitrary order impedance passive linear port-Hamiltonian system. The theoretical results are illustrated with a numerical example where we implement a controller for a one-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009